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This article proposes an empirical 
evaluation of credit risk in private 
infrastructure project finance (PF) 
debt. Despite its importance in 

the practice of banking, PF has received 
little attention in the finance literature. But 
a growing interest among asset owners in 
search of yield and diversification in private 
debt in general and infrastructure debt in 
particular suggests that documenting the 
risk profile of private debt instruments has 
become an increasingly relevant empirical 
question.

Existing empirical research on private 
infrastructure project credit risk relies on 
the possibility of observing actual events 
of default among a population in order to 
measure default frequencies, that is, so-
called reduced form models that represent 
credit risk as an exogenous random variable 
or hazard rate, which have been produced 
by credit rating agencies (see, e.g., Moody’s 
Investors Service [2017]).1

These studies are built using data 
pooled from banks and can include hundreds 
or thousands of loans originated by project 
f inance lenders over the past two decades 
or more. As such, they usually claim to be 
representative of the underlying population 
of originated loans (Moody’s [2017, p. 2]). 
While this may be the case (assuming no 
reporting biases among lenders), the related 
claim that such datasets can provide an 

unbiased view of the credit risk of private 
infrastructure loans is not self-evident.

In making these claims, rating agen-
cies assume that a representative dataset of 
credit instruments allows the observation 
of enough credit events to derive unbiased 
default frequencies.

However, this need not be the case if 
the population of instruments being sampled 
offers only limited evidence of credit events 
and what might cause them. Hence, there 
exists a fallacy of composition—inferring that 
the observation of a representative sample 
of credit instruments necessarily allows the 
observation of an equally representative set 
of credit events.

If credit events are sufficiently frequent 
within a population of loans, this assumption 
can be reasonable. If, however, credit events 
are sufficiently rare, or are clustered in time 
and space, then historical events of default 
may not provide unbiased estimates of future 
credit risk to creditors.

This point is well illustrated by the 
near-zero, 10-year marginal probability of 
default for project f inance loans reported 
in the most recent Moody’s study (Moody’s 
Investors Service [2017, p. 22]) In the very 
large sample available to Moody’s, there is 
close to zero reported (first) default events 
in the 10th year after financial close. By this 
measure, conditional on no default during 
the f irst 10 years, reported default risk in 
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private project finance debt is equivalent to that of a 
AAA rated bond, yet it typically carries a credit spread 
in the range of 80–250 bps, and when they are rated, 
infrastructure project loans tend to remain in the BBB/
BBB–range even after 10 years, directly contradicting 
rating agencies’ own reported default probabilities.

Insurance statisticians are familiar with these issues. 
It can be difficult to derive meaningful statistics about 
the likelihood of events that are seldom observable, let 
alone in sufficient numbers to control for the multiple 
variables that might have determined them. The 
likelihood of an earthquake in a given location or that 
of the mid-air collision of two commercial airplanes are 
typical examples. Likewise, modeling a hazard rate for 
investors in private infrastructure project debt is made 
more difficult by the difficulty in observing large sam-
ples of the phenomenon of interest.

Moreover, infrastructure investment is character-
ized by the large size of each investment and a highly 
illiquid private market, meaning that individual inves-
tors are usually exposed to a handful of assets and not 
the mean asset available at that time. Hence, even if 
credit events were frequent enough to model default 
frequencies accurately for a representative investor 
holding a large sample of available loans, the immense 
majority of creditors would not be better informed about 
their own risk exposure.

In this article, we propose a simple but powerful 
approach to deal with the dearth of information available 
about credit risk in private infrastructure debt: we extend 
the structural model of credit risk in private illiquid debt 
we put forward in Blanc-Brude and Hasan [2016], using 
Bayesian inference to extract robust credit risk estimates 
from observable data on cash f low ratio collected at the 
individual borrower level. We also provide a calibration 
of the model using a unique dataset of project finance 
cash f low covering 14 European countries and going 
back two decades.

Our objective is to calibrate a model of distance 
to default (Kealhofer [2003]) in infrastructure project 
f inance. Hence, the absence of observable default 
events does not limit our ability to model and predict 
default, since we can measure default risk before default 
events occur and even if they never occur. As a result, 
our approach also allows introducing control variables 
that are unavailable to reduced form models relying on 
observing actual default events.

This approach can be applied to a representative 
sample of loans, as is the case in existing studies, or to an 
individual portfolio or even a single loan, thus removing 
the requirement to hold a representative portfolio to 
derive meaningful information for an investor in private 
infrastructure debt.

The rest of this article is organized thus: first, we 
provide a very brief overview of the credit risk framework 
that underpins our empirical investigation. Next, we 
present our data and initial descriptive results, and the 
third section proposes a model to estimate the dynamics 
of private borrowers’ credit ratios. The fourth section 
describes our results, compares them with those from 
prior studies, and brief ly discusses industrial applications.

FRAMEWORK

The only empirical research available on the 
credit risk of infrastructure projects is provided by 
credit rating agencies that have pooled information 
about realized default events. This data is privately held 
and has not been available for independent academic 
research. Existing academic research on credit risk in 
project finance has focused on the pricing of credit risk, 
that is, the determinants of credit spreads in bank loans 
and bonds used to finance infrastructure projects (see, 
e.g., Blanc-Brude and Strange [2007]; Esty [2001, 2002]; 
Esty and Megginson [2003]; Kleimeier and Megginson 
[2000]; and Sorge and Gadanecz [2008]). This literature 
typically finds that project finance credit spreads do not 
have the same determinants as plain vanilla corporate 
debt but offers little insight into how risky such instru-
ments actually are.

Blanc-Brude and Hasan [2016, henceforth “BBH”] 
put forward a technical framework to measure credit risk 
in private illiquid debt using a structural approach—
that is, modeling the mechanism by which defaults occur 
as opposed to the occurrence of default events. The BBH 
framework requires the knowledge of debt service cov-
erage ratio (DSCR) dynamics of individual borrowers 
as its primary input. The DSCR is

 =
DSBCDSCR

CFADFF S
t

t

t

 (1)

in each period t = 1,2, …, T for a project financing of 
maturity T; DSBC is the debt service in the “base case,” 
that is, in the current debt contract.
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Because infrastructure project companies are con-
tractually prevented from raising additional funds (see 
Gatti [2013, Section 7.2.3.11.2, on negative covenants]), 
the DSCR provides an unambiguous def inition of 
default thresholds. The hard default threshold is easily 
defined as DSCRt (that is, Moody’s definition of default 
(Moody’s Investors Service [2017]). Likewise, the DSCR 
can also be used to unambiguously define “technical” 
default thresholds (Yescombe [2002]), that is, covenant 
breaches defined in terms of the DSCR level (DSCRt 
(1.x) that qualify as credit events and provide additional 
control or step-in rights to lenders.

It follows that the statistical distribution of DSCRt 
provides a direct measure of the probability of default at 
time t. A firm can be considered in default if its DSCR 
falls below 1.x, and its probability of “hard” default is 
simply the probability that the DSCR falls below this 
threshold when x = 0.

BBH also show that knowledge of DSCR dynamics 
allows computing the distance to default or DDt measure 
typically used in structural models of credit risk à la 
Merton [1974], since

 
1 DS

DS
1

1
,1

BC

BCDD
DSCRt

DSCR

t

tDSCRtt

=
σ

−
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−  (2)

where σDSCRt is the standard deviation of the annual per-
centage change in the DSCR value.

Robust estimation of DSCRt dynamics in infrastruc-
ture projects thus allows implementation of a powerful 
model of credit risk that can address the main shortcom-
ings of existing reduced form results; it can predict default 
even when there is no default event to be observed.

DATA AND PRELIMINARIES

Implem enting the BBH approach to modeling credit 
risk requires collecting cash f low data, computing DSCRs, 
and modeling their dynamics. In what follows, we describe 
our dataset and initial empirical findings. DSCR data are 
found to be noisy and their dynamics nonlinear, which 
motivates the modeling approach taken in the third section 
of this article, “Modeling DSCR Dynamics.”

Dataset

Our dataset of DSCR is built using manually 
collected and verified data from the audited statements 

of accounts of individual project companies. For the 
purpose of describing DSCR dynamics, the dataset also 
includes individual project size, leverage, industrial sec-
tors, countries, business model (whether the projects are 
contracted or merchant), and date schedules, including 
financial close and construction completion dates. The 
data obtained include information reported in compa-
nies’ balance sheets, and in income and cash f low state-
ments, and allows DSCRs, leverage, and other financial 
variables to be computed in each period.

In the literature, DSCRs are typically computed 
using an operating income (Ciochetti et al. [2003]; 
Harris and Raviv [1990]), but this can under/overesti-
mate the cash f low available for debt service in practice. 
For instance, if a project is drawing down additional 
debt to make its debt payment, then the cash available 
for debt service will exceed operating income. Similarly, 
if the project is investing capital in physical assets, then 
the cash f low available for debt service will be less than 
its operating income.

In an effort to create a meaningful proxy for credit 
risk, we compute what we call an “economic” DSCR, 
thus:

 C C C C C

DS
bank, op, , dC d, i ,

senior,

DSCRt
t tC CoC p, IA, t tCinv,

t

=
+ C CCC C −  (3)

where Cbank,t, Cop,t, CIA,t, Cdd,t, and Cinv,t denote cash at 
bank, cash from operating activities, cash withdrawal 
from investment account, cash from debt drawdowns, 
and cash invested in physical investments, at time t. 
Thus, our computation includes cash at bank, including 
any debt service reserve account or other cash, which are 
typically not included in the DSCR certificates reported 
to project finance lenders. This formula provides us with 
a DSCR that is directly linked to the default threshold 
described in the BBH framework, which is also the 
Moody’s definition of default: debt repayments cannot 
be made.

Thus, we compute realized DSCR observations 
across a range of infrastructure projects spanning more 
than 17 years, representing the largest such sample avail-
able for research to date, and conduct a series of statistical 
tests and analyses to establish the most adequate approach 
to modeling and predicting future DSCR levels and 
volatility.

Our dataset includes 267 projects spanning two 
revenue risk families (“contracted” and “merchant”), 
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in seven sectors2, from the 2000 to 2016, from all major 
European markets.3

Exhibit 1 presents summary statistics. Raw DSCR 
data contain some large outliers, especially on the 
upside. During the early years of a project’s life, espe-
cially when bonds are used, CFADS can be very high 
in that period since debt proceeds are invested in phys-
ical capital in subsequent years. Other instances of high 
DSCRs occur in the last years of certain loans, when 
very little outstanding debt remains to be paid rela-
tive to the firm’s free cash f low. These outliers impact 
reported mean and standard deviation. Exhibit 1 also 
reports descriptive statistics after truncating the data at 
the 90th quantiles of the empirical distribution.

We note that contracted projects tend to have 
higher DSCR than merchant ones (using our formula) 
which may come as a surprise. They tend to be hoarding 
more cash than their merchant counterparts, we discuss 
why in the section “Model Calibration Results.”

Initial Findings

Further examination of the data reveals the fol-
lowing stylized facts:

1. Contracted and merchant are different: The 
DSCRs of contracted and merchant infrastructure 
have different dynamics at the 1% level of statistical 
significance, that is, they belong to distributions 
with different means and volatility;4

2. Truncated DSCRs follow a Gaussian process: 
While the raw DSCR data do not follow any clear 
statistical distribution, due to high outliers, we find 
that truncating the DSCR sample between [0, 5] 
for contracted and merchant families, achieves a 
reasonable goodness-of-fit with the log-normal 
density function.5

3. Sectors matter less than business models: 
Testing for statistically significant differences of 
DSCR mean and volatility across industrial sectors 
yields no results once the business model families 
identified above are controlled for. These results 
are not reported here.

4. Project size and leverage matter: We proxy 
size by the total value of the project’s assets, 
and leverage is computed as the ratio of total 
outstanding senior liabilities to total assets. While 
project size has roughly similar distributions for the 
two families, project leverage is very different, and 
Contracted projects have a higher leverage com-
pared to Merchant projects. For both contracted 
and merchant infrastructure, higher leverage is 
associated with lower DSCR levels and standard 
deviation. The effect of size on realized DSCRs is 
less strong, but higher size tends to be associated 
with higher DSCR levels and volatility for both 
Contracted and Merchant projects.

5. Linear models are inadequate: Using ordi-
nary least square (OLS) models, we further inves-
tigate the explanatory power of business models, 
sectors, regions, leverages, size, financial ratios and 
project and calendar years. OLS models yield weak 
results with low adjusted R2 because DSCRs have 
dynamic profiles in project time, and in the cross-
section, may be impacted by project-specific and 
macro-economic factors. OLS models require data 
with constant variance and limited or no serial cor-
relation, but as Exhibit A3 shows, DSCRs exhibit 
non-constant variance (the Breush–Pagan test 
rejects the null hypothesis of homoskedasticity), 
signif icant autocorrelation (the Durbin–Watson 
test rejects the null hypothesis of no autocorrelation 
in the regression residuals) and non-normal resid-
uals (the Shapiro test rejects the null of Gaussian 

E X H I B I T  1
DSCR Summary Statistics

Note: Statistics without outliers are computed using DSCR observations between the 5th and 95th quantiles.
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residuals), all of which suggests that linear models 
are ill-suited to model our DSCR data.

6. A dynamic model is necessary: To account for 
the dynamic nature of the data, we also fit a panel 
regression model using fixed effects for project time, 
while calendar years and sectors are controlled for 
in the cross-section.6  The most interesting specifi-
cation controls for initial investment calendar years 
(in the cross-section) while taking into account 
fixed project year effects (in time). These models 
highlight the existence of multiple-year effects in 
DSCR dynamics, some driven by the project life-
cycle and some by the state of the project finance 
sector at the time of financial close. Stronger trends 
can also be detected in merchant projects, which 
tend to de-leverage faster than contracted one.7

We conclude that descriptive statistics and linear 
regression models fail to capture DSCR dynamics in 
full. In the next section, we discuss an approach to build 
a more powerful model of DSCR dynamics.

MODELING DSCR DYNAMICS

To model the  dynamics of DSCRs in infrastructure 
projects, we make the following assumptions inspired by 
the initial results described earlier:

• The DSCR follows a stochastic process that is a 
simple translation of the firm’s free cash f low pro-
cess, as per Equation (1);

• This process can be in two “states”: risky or safe. 
In the risky state, DSCRt follows a latent process 
characterized by a log-normal distribution of 
unobservable mean and variance parameters, which 
determine the firm’s credit risk, as per Equation 2;

• In the safe state, DSCRt is relatively high and its 
dynamics have no impact on credit risk, which can be 
assumed to be negligible, that is, Pr(DSCRt = 0) ∼ 0 
conditional on being in the safe state.

• The DSCR process can transition between states, 
with some probability at each period in time.

In this setup, understanding credit risk in infra-
structure projects consists of estimating the Gaussian 
distribution parameters of the DSCRt in the risky state, 
as well as the probability of DSCRt being in the risky 
state, at each point in time.

In what follows, we proceed in three steps: we first 
represent the transitions between risky and safe states as a 
standard Markov chain model. We then show how esti-
mating state transition probabilities as well as the DSCR 
distribution parameters in the risky state can be done by 
applying simple Bayesian inference techniques, requiring 
only basic calculus as long as the assumption of log-
normality of DSCRt in the risky state can be maintained. 
This assumption is deemed reasonable in light of the 
descriptive results above. Bayesian inference then allows 
for calibrating a DSCRt model even when limited infor-
mation is available. For instance, state transitions can be 
rare, especially after the first few years of a loans’ life.

DSCR States as a Markov Process

As well as h aving time-varying dynamics, we 
noted earlier that DSCRs could take high values, 
suggesting virtually zero probability of default at that 
time. Moreover, these high values were found to curtail 
the goodness-of-fit of a log-normal density function 
when applied to the data, whereas both Contracted 
and Merchant DSCRs could effectively be considered 
log-normal if the sample was truncated at a threshold 

= 5DSCR .
These f indings suggest a simple state-transition 

model of the DSCR process with two distinct states:

1. A safe (i.e., r isk-free) state “s” in which 
>DSCR DSCRt , and

2. A risky state “r” in which <DSCR DSCRt .

An example path from state to state followed by an 
individual project is illustrated by Exhibit 2.

In the safe state, the realized DSCR is so high that 
no matter how volatile the process might be, from a 
senior creditor perspective, the probability of default is 
not significantly different from zero. The debt is (con-
ditionally) risk-free. As before, in expectation at time t, 
an infrastructure project may transit in and out of the 
safe state at each point in the future, with some prob-
ability (πsr). In the safe state, estimating the parameters 
of the DSCR distribution, in particular estimating its 
variance, is also irrelevant.

In the risky state, a project’s DSCR may take values 
between 0 and some higher threshold DSCR. From this 
state, it may either stay in the risky state at the next 
period, or transit into the safe state “s,” described above. 
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Within the risky state, the project may default if the 
DSCR falls below 1.

In the risky state, we know from our results above 
that if the upper threshold is set at 5DSCR = , the data 
follow a log-normal process, the parameters of which 
(position and scale) can be estimated using the particle 
f iltering approach described in the section “Particle 
Filtering.”

Estimating state transition probabilities amounts 
to estimating the components of a matrix describing 
a Markov process. As suggested above, the DSCR 
process can take one of two states St at time t: a risky 
state defined as DSCRt ≥ 0 and denoted by St = r, or 
a safe state such that >DSCR DSCRt  and denoted 
by St = s. The probability of being in the risky state 
is def ined as Pr(DSCRt ≥ 0) = Pr(St = r) = pt while 

= =( )> ( ) 1Pr Pr = q p= −1t t)> (Pr t tp1 .
In a Markov process, future DSCR states are a 

function of the current state. Denoting time i = τ − 1, let 
πrs = Pr(St+τ = s|St+i = r) be the state transition probabili-
ties between states r and s, with the one-step transition 
probability matrix given by

 St i

rr rs

sr ss

=
π πrr

π πsr

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  (4)

Here, πrr is the probability of being in the risky 
DSCR state at time t + τ conditional on having been in 
the same state at time t + i, and πrs is the probability of 
transiting to the safe state at time t + τ conditional on 
having been in the risky state at time t + i.

The probability of being in the risky state at t + τ 
conditional on the realized state at t + i is thus

 = π + −τ + ++ (1 )(1 )− πp =+ pt t+τ p+τ i rππ r t+r i s)(1 π s  (5)

and in the matrix notation

 

p

q

p

q
t

t
t i

t i

t i

S .
⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

+τ

+τ

 (6)

That is, the probabilities of being in the risky (safe) 
state in period t + τ are determined by the product of the 
transition matrix with the probabilities of being in the 
risky (safe) state in the previous period t + i.

Hence, staring from any point in time, for which 
we know which state the DSCR is in (i.e., DSCRt is 
either strictly greater than 1 or not), we can compute the 
probabilities of being in the risky and safe states at future 
periods by successively applying the transition matrix.

According to Equation (6), we can know the con-
ditional probabilities of being in the risky or safe state 
in each future period t + τ by estimating St+i across the 
project life cycle for i = 0, … (T − 1), as well as initial 
state conditions.

Estimating Transition Probabilities

In Markov switching models, the transition prob-
ability from a state i to a state j is estimated by counting 
the observed number of transitions from state i to state j 
and dividing by the total number of transitions from 
state i. That is,

 

∑
π =

=

ˆ ,
,1

n

n
i j,

i j,

i k,k

N  (7)

where π̂i j,  denotes the estimated transition probability 
from state i to j, ni,k denotes number of transitions from 
state i to state k, and N denotes the total number of states.

In Bayesian Markov switching models, we start 
with forming a prior belief about transition probabilities 
between different states, based on information available 
otherwise, which is then updated as one observes actual 
transitions between states.

E X H I B I T  2
Illustration of the DSCR Path between States
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By definition, the values of any St+τ are such that 
each line of the state transition matrix must add up to 
one, that is, πrr + πsr = 1. Hence,

S
1

1
,t

rr rr

rs rs

=
π −1rr π
π −1rs π

⎛

⎝
⎜
⎛⎛

⎝⎝
⎜⎜
⎝⎝⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
⎟⎟
⎠⎠⎠⎠

that is, each row of St+τ matrices is equivalent to an 
independent Bernoulli draw of parameter πrr or πrs, and 
we only need to estimate πrr and πrs to know the entire 
transition matrix at time t + τ.

Say we can observe a population of N projects at 
time t, with n of “successes” (realized DSCR transitions 
between two given states), these data (call it Y ) follow 
a binomial distribution (the outcome is binary) with 
the likelihood

π
⎛

⎝⎝⎝

⎞

⎠⎠⎠
−( | ) (=

⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠
π 1 )− πN

n
n N(1 )π nL

where 
!

!( )!

N
n N!( k( )N

n
=

−
 is the binomial coefficient.

According to Bayes’ Law

∝( | ) ( ) ( | )πp Y( |π p Y( ) (π L

that is, the posterior (distribution) is proportional to the 
prior (distribution) times the likelihood.

We can give a beta prior density to Pr(π), such that

( ; ,
( )

( ) ( )
( )1 1(1 )p α; β =)

Γ α( + β
Γ α( Γ β((

π −(11(1 πα− β−

The beta distribution has a domain on [0, 1] which 
can usefully represent a probability and can take any shape 
on its domain. The beta distribution is also conjugate with 
respect to the binomial likelihood, so that the product of 
the prior (beta) and the likelihood (binomial) is another 
beta distribution, which incorporates the information 
obtained from observing the data.

 
( | ) ( ) (L | )

(1 ) (1 )

( )

1

p Y( | p Y( ) (L

B t N n

n N(1 )

∝)Y| |Y) (L

∝ π − π
∝ (Beta + β,, −N

αn − β(1 )1(1 )

 (8)

… to a normalizing constant which does not depend 
on π.

Hence, the sufficient statistics to update the prior 
distribution of π are N and n, which we know to be 
observable, that is, with an observable population of N 
projects, we can count the number n of draws corre-
sponding n realised DSCRs strictly greater than one at 
time t + τ, given that we also observed DSCRs strictly 
greater than one at the previous period.

In other words, by assuming that the true value 
of πrr is the mean of a beta distribution of parameters 
(α, β) (the meta-parameters), given that the likelihood 
function of the data follows a binomial distribution of 
parameter πrr with N data points, we can update the 
values of the meta-parameters each time we observe n 
transitions (in this case projects staying in the risky state 
from one period to the next) among N new data points.

The posterior distribution of πrr summarizes the 
state of our knowledge by combining information from 
newly available data expressed through the likelihood 
function, with ex ante information expressed through 
the prior distribution.

The posterior distribution of Pr(πrr) then becomes 
a new prior each time new empirical observations become 
available. Bayesian inference thus allows sequential 
learning about the expected state transitions of projects’ 
DSCRs.

The same process is used to estimate πrs, after 
observing projects transiting from the risky to the safe 
state.

Bayesian Parameter Estimation 
in the Risky State

We know from the results above that DSCRt is 
serially correlated and can change its risk profile during 
the investment life cycle of infrastructure projects. 
In other words, the expected value E(DSCRt) and the 
volatility σ2

DSCRt
 are partly determined by the lagged 

values of the same quantities at time t − 1, and partly by 
innovations (incremental changes) or shocks happening 
at time t. However, the true mean and volatility of the 
DSCRt process are unobservable and can only be imper-
fectly measured by observing realized mean and variance 
of observed DSCRs.

Moreover, as argued earlier, there may not be suf-
ficient realized DSCRs available to form accurate esti-
mates of the latent DSCR mean and volatility of existing 
projects, partly because of a lack of data, and partly 
because the existing projects that were f inanced and 
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structured several decades ago may not be representative 
of projects that are being financed and structured today.

Therefore, we aim to build a model of the mean 
and volatility of DSCRt that is capable of integrating 
information contained in realized DSCRs, without 
making static assumptions about the underlying pro-
cess, and learning from new observations as they become 
available.

Numerous models exist that aim to determine the 
position of a dynamic system and, based on the latest 
round of observations (measurements), to predict where 
it will be positioned in future periods. Such systems are 
frequently applied in robotics, aero-spatial tracking, and 
chemistry. Here, we apply Bayesian particle filtering to 
estimate the position of a given infrastructure project in a 
mean/volatility DSCR “plane” at a given point in time, 
and to predict its position—its DSCR mean and variance 
“coordinates” so to speak—in the following periods.

As before, Bayesian inference allows the parameters 
of the distribution of interest (here the DSCR at time t) 
to be treated as stochastic quantities, thus ref lecting the 
limits of our current knowledge of these parameters, 
or their stochastic nature. Thus, each parameter of the 
DSCR distribution is given a distribution of its own and 
the variance of, for example, the parameter representing 
the volatility of DSCRs, represents our current uncer-
tainty about the true value of this parameter.

In this setup, we first build a prior distribution of 
the DSCR process, given the current state of knowledge 
about infrastructure debt investments. In each period for 
which DSCR data become observable, this prior knowl-
edge is updated to derive a more precise posterior prob-
ability distribution of DSCRt.

In the risky state, DSCRt follows a log-normal 
process,

 ( ) ~ ( , ),log D(o ) ~ m p,t t) () m t  (9)

where mt is the  location parameter of the distribution, 
and pt its precision, which is defined as the inverse of its 
variance, or pt = 1 ⁄σ2.

Hence, the latent state of the DSCRt process is 
Xt = (mt, pt), and the state equation is

 + φ +− ,1 + φφ 1X X= W+t tX t t1 tWW  (10)

where Ut denotes  various factors that may affect the 
mean and volatility of a project’s DSCR, and φt is the 
project’s exposure to these factors. In other words, 

the parameters mt and pt of the DSCRt process are 
assumed to follow a stochastic autoregressive process 
with one lag, which is affected by k known factors, 
with the random innovation or disturbance Wt. For the 
set of factors, Ut, that may affect the DSCR distribution, 
we consider the project’s business model, sector, region, 
and time to maturity. Thus, a representative contracted 
project in the UK will have an exposure of Uk,t = 1 for 
k ∈ {Contracted, GBR}, while it may have an exposure 
anywhere in the range of [0, 1] to various sectors, deter-
mined by the number of U.K. Contracted projects in 
various sectors.

Unknown parameters (whether they are stochastic 
or not) are given a probability distribution. Here, mt, 
the mean of the log-normal DSCRt process follows a 
normal distribution of meta-parameters μt and δt, and 
the precision pt of the DSCRt process follows a gamma 
distribution of meta-parameters α and β. That is,

 φ + μ δ~ (φ + )δ,m ~ φt mφφφ t t t tδδ  (11)

 φ + Γ α β~ (φ + Γ , )β,p ~ φ ,t pφφ t t t tβ,β  (12)

The state vector Xt is written Xt = ((mt|μt, δt), 
(pt|αt, βt)).

For ease of interpretation, we define φm,t coef-
ficients such that they are zero for the representative 
project in every year. In the case of mt, this can be done 
by rewriting the above Equation for mt as follows:

 φ + φ − + δ~ μ + φ + φ ) + ), ,m ~ μ + φ w−t tμμμ m, + φφφ t t t tδ) (+ , , (13)

where wt is the weight of th e representative project on 
each factor, Uk,t, which is determined by the fraction of 
the number of DSCR observations with Uk,t = 1 rela-
tive to the total number of observations. Now, we can 
redefine μt as

 μ ≡ μ + φ ,, wt tμ m t, t  (14)

and write mt as

 μ δ + φ~ ( )δ ( ),m ~ −t tμ( t m+ φ) t t( t  (15)

Thus, for the representative p roject, the exposure 
to each factor, Ut, is equal to the weight, wt, and the 
mean mt is distributed as N(μt, δt). However, for a project 
k in a specific family (Uk,t = 1), the mean, mk,t is given 
by the mean of the representative project, N(μt, δt), 
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plus a contribution due the fact that the weight of the 
project for kth factor, given by Uk,t, deviates from the 
representative project’s exposure to the kth factor, given 
by wk,t.

Similarly, pt can be rewritten relative to the repre-
sentative project as

 Γ β φ −Γ β )−,p α β + φ~ Γ ,β ,t tα(Γ t p+ φ t t t  (16)

As is well documented in the litera ture, under such 
parameterization the prior distribution of the parameters 
is conjugate (has the same functional form) to the likeli-
hood of the data, which makes implementing Bayes rule 
straightforward and computationally easy.

Indeed, the conjugate prior of a log-normal pro-
cess is a gamma-normal distribution (Fink [1997]), that 
is, as a function of m and p, the likelihood function is 
proportional to the product of a gamma distribution of 
p (with parameters a and b) with a normal distribution 
(with mean μ and precision δ) of m conditional on p.

Next, if the realized DSCR data Y follow a 
log-normal process of mean m and precision p, their 
likelihood function is given by

 L( , | ) /2 2
(log )2

1m p, Y p) eN
p

Y mnYY
n

N∑ (logY− ∑⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

=  (17)

where N is the number of observations.
This relationship relates observations Y to the 

latent state X.
Following (Fink [1997]), the sufficient statistics 

(required data) to update a prior distribution are the 

number of observations N, 
∑= =[ ]

ln( )
1E[
N

n

N

n
, and SS 

the sum of squared deviation of the log data about m; 
and the joint posterior distribution Pr(m+, p+) is given 
by the meta-parameters
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Thus, each time a new set of DSCR data is observed, 
we know N, Y  and SS, and the posterior values 
of α+, β+, μ+, and δ+ can be computed according to 
Equation 18, and the posterior parameters m+ and p+ of 
the distribution of DSCRt derived, incorporating prior 
knowledge and the new information. Finally, coeffi-
cients for various factors can be computed as
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 (18)

where =[ | 1],Y E= U|k k[ |Y EY U| t  is the mean condit ional on 
Uk,t = 1, Nk is the number of observations for Uk,t = 1, 

and =,w
N

Nk t,
k  is the relative number of observations for 

Uk,t = 1.

Particle Filtering

Filtering models are a form of signal processing 
and aim to arri  ve at some best-estimate of the value of a 
system, given some limited and possibly noisy measure-
ments of that system’s behavior.

Given any initial belief about the mean and variance 
of DSCRt —drawn for example from the historical project 
family mean and variance—and assuming a log-normal 
DSCR process, deriving the prior values of the state 
vector meta-parameters (( , ),( , | ))

0 0 0 0 0 0 0
X (( ,t t0 t t|

0
| t t,

0
, t(((((((( δ α| ),(m| t|m| β) ( −| , 

is a matter of simple arithmetic.
Next, given the prior distributions of 

0
mt  and 

0
pt , 

we make 1,000 draws for each parameter to generate 
1,000 “particles”, that is, each particle i is a pair (m, p), 
that is, a possible occurrence of the DSCR state 

0
Xt  given 

the meta-parameters.
We then observe the data (realised 

1
DSCRt ) in the 

first investment period and compute the likelihood Li 
for each one of the 1,000 particles given the data, as per 
Equation (17) on page 17.

Normalized likelihood scores wi
8 are then used 

to rank individual particles, which are then resampled 
by weight, that is, each particle is duplicated 1000 × wi 
times and only the first 1,000 particles by rank are kept 
in the sample. Thus, the resampled particles are updated 
according to how likely they are to be the true mean and 

JFI-Blanc-Brude.indd   62JFI-Blanc-Brude.indd   62 01/03/18   4:37 pm01/03/18   4:37 pm



THE JOURNAL OF FIXED INCOME   63SPRING 2018

variance of the DSCR given all the DSCR observations. 
And the distribution of DSCR mean, m, and precision, 
p, is updated accordingly.

The resulting posterior parameters of the DSCR 
distribution at time t1 then become the prior estimates 
of the DSCR process at time t2, before any observations 
are made at that time, and the filtering and updating 
process starts again.

Exhibits 3 and 4 show this procedure schemati-
cally. In Exhibit 3, particles are generated based on the 
prior distribution of m and p. These particles are then 
resampled using the likelihood of observed DSCR in 
Exhibit 4, and the particles with higher likelihood of 
explaining the observations get higher weight. The resa-
mpled particles then provide the updated estimate of 
DSCR mean and variance.

Hence, whether we are observing realized DSCRs 
for a whole sample of projects or for a single one, we can 
estimate the current and future trajectory of the DSCR 
process in a mean/volatility plane.

In summary, our approach consists of filtering the 
parameters of the DSCR distribution in the “risky” state 
in which we can reasonably assume that it follows a log-
normal process, as well as the transition probabilities 
in and out of that state at each point in the project life 
cycle. In the next section, we implement this approach 
to our dataset.

MODEL CALIBRATION RESULTS

In this section, we implement our approach to 
estimate DSCRT dynami cs in project finance debt and 
calibrate the BBH model of credit risk.

DSCR State Transitions

The safe state threshold is set at =DSCR 5, 
that is, high eno   ugh to justify the assumption of a zero-
conditional probability of default and that of a log-
normal DSCR process in the risky state.

We start with a uniform prior for the probability 
of staying within the same state. That is, prr and pss are all 
assumed to follow beta distribution with α = β = 1. In 
the next period, we observe transitions between states, 
and update our prior estimates of α and β according to

 α = α + nii ii ii  (19)

 β = β + N n−ii ii i in i  (20)

where i ∈ {r, s}, and Ni denotes total number of transi-
tions from state i, and nii denotes total number of transi-
tions from state i to state i. The average probability of 
staying within the same state, pii, is then given by the 
definition of the mean of beta-distributed variables:

 =
α

α + β
pii

ii

ii ii

 (21)

E X H I B I T  3
Generating Particles Using Prior Knowledge to Estimate 
DSCRt Mean and Variance Using a Particle Filter

E X H I B I T  4
Updating DSCRt Mean and Variance Estimates 
Using Resampled Particles
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These updated (posterior) estimate of αii and βii are 
then used as prior estimates for transition probabilities 
for the next period. This evolution of transition prob-
abilities captures both the effects of time variation in 
true underlying transition probabilities as well as the 
effect of learning about these true probabilities. As we 
move forward in time, our prior becomes more and 
more informed, and estimated transition probabilities 
become more stable.

Exhibit 5 shows transition probabilities in each 
period between safe and r isky states. We see that the 
transition probabilities from the safe state to the risky 
(safe) state go down (up) in project time for both Con-
tracted and Merchant projects, while transition prob-
abilities from the risky state (not shown here) stay largely 
unchanged. This suggests that projects de-risk over time, 
as the projects that are in the safe state become more 
likely to remain in the safe state, over time. This de-
risking trend is stronger for Merchant projects for which 
the probability of staying in the safe state conditional 
on being in the safe state goes up to 60% in operation 
year 17.

Generally speaking, the risky DSCR state is highly 
persistent, that is, the probability of staying in this state 
once the process is in it, is high, for both project families, 

indicating that the projects are likely to stay in the risky 
state once they are in the risky state. The RR transi-
tion probability is close 100% (not shown here), is much 
higher than the SS transition probability, which is close 
50%, which suggests that the projects that are in the 
risky state tend to stay in the risky state, while projects 
that are in the safe state may transition into the risky 
state. This is also illustrated in Exhibit 6, which shows 
average per-period transition probabilities for the two 
states.

Finally, Exhibit 7 shows the probabilities of being 
in one of two states for Contracted and Merchant 
projects. For both types of projects, the probability 
of being in the risky state decreases over time, while 
the probability of being in the safe state increases over 
time.

E X H I B I T  5
Transition Probabilities from the Safe State for Contracted and Merchant Projects in Operation Time

E X H I B I T  6
Average State Transition Probabilities (%) between 
Risky and Safe States
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Filtered Values of the DSCR Distribution

To calibrate the risky state dynamics, we estimate 
the DSCR log-normal dist ribution parameters m and p 
at each point in time as described above.

As before, prior values are assumed for the four 
meta-parameters—μ, δ, α, β—of the DSCR distribu-
tion, and updated sequentially using a particle filter. The 
values of these meta-parameters (μ, δ, α, β) are shown 
in Exhibit A4. Meta-parameters give us the DSCR dis-
tribution parameters of m and σ in Exhibit A4. Due to 
the relatively large number of DSCR observations in the 
cross-section in initial years, the effect of initial prior 
values fades away within the first period in this case, 
and the variance of estimated distribution parameters 
(Δm, Δσ) is very low, indicating that the mean values of 
the distribution parameters (m, σ) are estimated with a 
high confidence. Once the distribution of parameters of 
the DSCR distribution is known, we can take the mean 
values of these parameters (m , σ ) as our best guess for 
the parameters of the DSCR distribution.

Exhibit 8 shows the estimated mean and SD of 
DSCRt in the risky state for various projec  t groups. Con-
ditional on being in the risky state, different groups can 
exhibit various levels of mean and standard deviation of 
DSCRt. These levels may seem counterintuitive since 

different business models are found to have similar vola-
tility at some points in time; however, unconditional 
levels of credit risk are also determined by the DSCR 
level and the probability of the risky state for each group 
(we return to this in the next section).

The effect of different project characteristics on the 
mean and SD of DSCR can also be seen in Exhibit A5, 
which shows the sensitivity (beta) of DSCR mean 
and SD estimates to the change in a specif ic project 
characteristic: the DSCR SD is typically less sensitive to 
changes in project characteristics than the DSCR mean, 
and among various project characteristics, ESP (Spain) 
region has the largest effect on DSCR levels.

CREDIT RISK IMPLICATIONS

Together the results described in the previous 
section provide a complete picture of the credit risk of 
private infrastructure project debt over the sample period.

The probability of the DSCR being in the risky 
state, times the probability of DSCRt falling below a 
certain threshold in the risky state is the equivalent 
of the marginal default frequencies (PD) reported by 
rating agencies. Cumulative default rates, default risk 
over calendar (as opposed to project) time and distance 
to default can also be reported.

E X H I B I T  7
Probability of Being One of the Two DSCR States for Contracted and Merchant Projects
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Panel A of Exhibit 9 shows the unconditional 
probability that DSCRt falls below the hard default 
threshold at each point in project time for the full sample 
period. Only the first default of payment is counted, 
which is consistent with Moody’s definition of default 
(missing one payment) and computation of marginal 
PDs in Moody’s [2017]. Consistent with rating agen-
cies results, we f ind that project f inance borrowers 
tend to de-risk over time. However, we find a range of 
default risk profiles depending on the control variables 
used. At the aggregate level (black line), we find higher 
levels of marginal PD than in Moody’s [2017]. This is 
not surprising since we measure all potential defaults, 
as opposed to a biased sample of actual credit events. 
We note that after 10 years, conditional on no default 
until that time, PD in project f inance senior debt is 
typically not equal to zero, in contrast with reported 
PDs in Moody’s [2017], but more in line with typical 
credit ratings.

The ability to introduce control variables in our 
model allows for differentiating between different project 
business models, sectors, or countries and suggests very 
different risk profiles. For instance, projects financed in 
Spain exhibit, at the beginning of their lives, very high 

credit risk but also the most dynamic change in their 
risk profile over time. Merchant projects are markedly 
riskier than contracted ones and projects in the UK, 
especially those created under the Private Finance 
Initiative (PFI) are found to be considerably less risky, 
primarily because they exhibit high levels of expected 
DSCR when cash at bank is included in the computa-
tion of CFADSt.

Panel B of Exhibit 9 shows the same result excluding 
projects that actually did default, that is, it is the credit 
risk of the surviving population of borrowers 16 years 
after origination. Looking at Spain again, the bump of 
PD around year 10 in Panel A, corresponding to the 
collapse of the toll road sector and series of defaults/
bankruptcies in 2012–2013, has disappeared in Panel B, 
since only surviving borrowers (that did not default) are 
included. We note that credit risk was still very high in 
early years for Spanish projects that survived, because 
they tended to be highly leveraged and generated limited 
free cash f low relative to their debt repayments. Over 
time, they were de-risked either because they gradu-
ally repaid their debt or were restructured before a hard 
default occurred, thus reducing credit risk.

E X H I B I T  8
Conditional DSCR Mean and Volatility for Different Project Groups (i.e., conditional on being in the “risky” 
state when DSCRt [5])
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While Panel B of Exhibit 9 is a biased result 
(survivorship bias), it shows that under the BBH frame-
work, credit risk can be measured even when no default 
can be observed. Thus, a very prudent or lucky lender 
only picking borrowers that did not default over the 
past 16 years can still be considered to be exposed to 
significant credit risk.

These results are also presented in terms of cumu-
lative default risk in project time (Panel A) and mar-
ginal risk in calendar time (Panel B) in Exhibit 10. As 
before, we report higher cumulative PDs in project time 
than rating agencies: across all sectors and countries 
10-year cumulative PD is close to 12%, almost double 
the figure reported in Moody’s [2017]. We note that 
the 10-year cumulative probability of default in Spain 
is close to 50%.

In calendar time (Panel B of Exhibit 10), the 
aggregate PD follows the business cycle, decreasing 
from the early 2000s until the 2008 f inancial crisis 
and increasing again from 2009 onwards, but not quite 
as much. This is consistent with previously reported 
evidence and is driven by the much larger number of 

contracted projects relative to merchant ones in the 
underlying population of infrastructure projects in 
Europe since 2008. In effect, merchant project PD 
taken in isolation tends to peak much more markedly 
at bad times in the economic cycle, especially Spanish 
projects, but also any merchant project as illustrated by 
the blue line in Exhibit 10.

Finally, Exhibit 11 reports DDt (distance to default) 
as per Equation 2. As before, projects tend to de-risk over 
time as their mean DSCRt increases and their volatility 
decreases. PFI projects in particular are found to be 2.5 
standard deviations away from a hard default after less 
than a decade of operation, which confers them a very 
low credit risk. Conversely, merchant projects exhibit a 
stable distance to hard default over time at 1.5 standard 
deviations from the default threshold. DDt in Spain is 
the lowest in early project year but shifts upward closer 
to the sample mean as numerous projects fail to survive 
the first 10 years and leave the reporting sample, having 
experienced hard defaults.

In this article, we have conducted the first empir-
ical study of DSCR dynamics in infrastructure project 

E X H I B I T  9
Probabilities of Hard Default for Various Project Families with and without Defaulted Borrowers 
(computed as the probabilities of DSCRt falling below 1:0)

Note: Panel A comprises all projects, including the ones that defaulted, and Panel B includes only projects that never defaulted.
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E X H I B I T  1 0
Cumulative Probabilities of Hard Default and Probabilities of Hard Default by Year

E X H I B I T  1 1
Distance to Hard and Soft Default at Thresholds of 1:0 and 1:1
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finance using a new and unique dataset of 15 years of 
realized DSCR data for 267 projects in Europe and cov-
ering two broad categories of projects: those receiving 
a contracted income and those exposed to merchant or 
commercial risk.

We conclude that relying on reduced form models 
that require observing numerous default events is ill-
suited in a sector characterized by a limited number of 
observable credit events. Instead, the structural approach 
proposed by BBH can be calibrated using observable 

E X H I B I T  A 1
Non-Parametric Test Results for the Difference in Mean and Variance between the Contracted and Merchant 
DSCR Subsamples

Note: Mann–Whitney, Bartlett, and Kolmogorov–Smirnov tests are non-parametric tests for the equality of means, variances, and distributions 
of two samples, respectively.

E X H I B I T  A 2
Estimated DSCR Distribution Parameters and the Corresponding p-Values for the Cramér–von Mises 
Goodness-of-Fit Test

E X H I B I T  A 3
Test Results for Heteroskedasticity, Autocorrelation and Normality of Residuals for Log(Dscr) Ordinary 
Least Squares (OLS) Regression

DSCR data and Bayesian inference. Our results suggest 
that credit risk in project f inance is heterogeneous and 
driven by project business models, but also regional 
and sector specif ic, resulting from the procurement 
choices and types of creditors active in various mar-
kets. At two ends of the spectrum, contracted projects 
procured in the UK (primarily PFI projects) exhibit 
very low if any credit risk, whereas merchant projects 
procured and financed in Spain represent a high-risk 
form of credit.

A P P E N D I X  A
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ENDNOTES

1In each period, a sample of live loans can be observed, 
a certain number of which go into default during that period. 
The hazard rate is simply the ratio of the number of reported 
defaults to that of the number of live loans at the beginning 
of each period (Moody’s [2017 p. 17]).

E X H I B I T  A 5
DSCR Mean and SD Coefficients (Beta) for Various Project Characteristics

E X H I B I T  A 4
Meta-Parameters of the DSCR Distribution for Contracted and Merchant Families

∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% level, respectively. 

2Transportation, Telecoms, Oil & Gas, Industrial, 
Government Services, Environmental Services, and Energy.

3UK, Spain, France, Italy, Portugal, Germany, Norway, 
Sweden, Ireland, the Netherlands, Poland, Slovakia, and 
Austria.

4Exhibit A1 provides the results of non-parametric tests 
of the null hypothesis that both contracted and merchant 
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infrastructure have the same mean and variance. The resulting 
Mann–Whitney, Bartlett, and Kolmogorov–Smirnov test sta-
tistics lead to the conclusion that the null hypothesis can be 
rejected with a high degree confidence (low p-value). As a 
result, we conclude that contracted and merchant projects 
exhibit different DSCR distributions.

5Increasing the upper cutoff level for the DSCR up 
to 10 does not signif icantly affect the goodness-of-f it  in 
most operation years, but the goodness-of-f it deteriorates 
in some operation years. Exhibit A2 shows that within this 
DSCR range of [0; 5], we cannot reject the null hypothesis 
that DSCRs follow a truncated log-normal distribution. This 
result is also true at each point in time t in the investment life.

6That is, the model f its a different intercept for each 
investment year, as opposed to each firm, and controls for cal-
endar-year specific effects through calendar-year dummies.

7We also test for the impact of profit margins, asset 
turnover (revenue/total assets ratio), cash return on total 
assets (operating cash/total assets), capex coverage (operating 
cash/capital expenditures), and capital expenditures to rev-
enue ratio on realized DSCR levels. Only asset turnover is 
significant for both business model families, with a positive 
coefficient, which is intuitive.

8 .w
L min

max mini
i=
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